

Second-level fNIRS analysis with covariates

13rd July 2020

Jessica Gemignani, *PhD* Integrative Neuroscience and Cognition Center Université de Paris & CNRS

Outline

- Introduction
 - Why to use covariates?
 - Examples in literature
- How to include covariates in the analysis
 - ANOVA vs Mixed Effects Model
- Walkthrough with the Brain AnalyZIR toolbox
- Conclusions

Introduction

An experiment is designed to test the effects of some intervention on one or more measures \rightarrow outcome/ response / dependent variables (typically, HbO/HbR activation)

With the statistical analysis, we aim at explaining the DV in terms of **predictors/** independent variables / explanatory variables

Stojanovic-Radic et al 2014:

- Main goal is to determine differences in the neural activation of the orbitofrontal brain region between individuals with multiple sclerosis and healthy individuals
- Task: *n-back*

	MS	HC
N	13	12
% female	92 %	67 %
Age Mean (SD)	45.8 (8.8)	31 (9.6)

Participants info (Stojanovic-Radic et al 2014)

- Only the condition is of interest (0-back vs 1-back vs 2-back in the two group)
- But age is also entered in the model because individuals in one group are much older than the other group

Examples in literature (2)

Vassena et al 2019

- Main goal is to compare activation of the dorsolateral prefrontal cortex (DLPFC) when individuals are mentally preparing for a hard task vs easy task
- Task: mental arithmetic (difficult/easy) + several questionnaires
- Statistics: several covariates (reaction time, performances in executing the task, the difficulty of the task...)
- In this case, the effect of the covariates on the activation was of interest

From Vassena et al 2019

Gemignani et al 2018:

- Main goal was to compare classification accuracies achieved by three different algorithms
- Input to the group-level: subject-level classification accuracies
- Additional covariates: Hair color, time of measurement and gender
- In one case, classification accuracy was lower in brown-haired subjects

	LDA: Hb	O + HbR	GLM:	HbO	GLM: HbR		
	ß	p-value	ß	p-value	β	p-value	
Age	0.0042	0.1762	0.0010	0.8734	0.0068	0.1120	
Hair color	0.0361	0.1875	-0.0936	0.1020	-0.1408	0.0052	
Gender	0.0038	0.1476	-0.0077	0.1552	-0.0026	0.4904	
Time of measurement	-0.0187	0.5109	0.0573	0.3308	-0.0072	0.7540	

Results table from Gemignani et al 2018

This applies at first and second level

First-level statistics:

 \rightarrow β for each condition → β for each additional covariate

> The covariate must have as many observations as the timeseries to be modeled (at first level: #observations = #time samples)

This applies at first and second level

Group-level analysis with covariate

- ANOVA with covariates: ANCOVA (Analysis of Covariance)
- ANCOVA vs Mixed-Effects Model:
 - Ideally, they should yield the same answer
 - But Mixed-Effects Models are to be preferred:
 - Better account of imbalance in the design (different number of participants in the groups, different number of tasks within each participant, missing data as a result of discarding bad quality channels)
 - Possibility of including random effects, accounting for variability in outcome across participants

Walkthrough with Brain AnalyzIR toolbox

- Download at <u>https://github.com/huppertt/nirs-toolbox/</u>, unzip and add to the matlab path
- Many webinars available in the NIRx Help Center
- Structure of the folder containing the data:

%% 2020, July 13rd - Webinar on Statistics with covariates

%% Jessica Gemignani

% This demo is largely based on the demo scripts available in the nirs % toolbox folder, have a look!

dataFolder= 'C:\Users\Jessica\Documents\PROJECTS_NIRx\202007_StatisticsWebinar\demo_data';

%% load data		
% this function loads a whole directory of .nirs files. The second argument		
% tells the function to use the first level of folder names to specify		
% group id and to use the second for subject id.		
raw = nirs.io.loadDirectory(dataFolder, {'group', 'subject'}); 🧲	The second option specifies the hiera	rchy of the root folder
<pre>% View the demographics information:</pre>		
<pre>demographics = nirs.createDemographicsTable(raw);</pre>		

>> raw	>> demographics	
raw =	demographics =	
68×1 Data array with properties:	68×2 <u>table</u>	
description	group subject	
data		
probe		
time	'G1' 'S11'	34 subjects per group
Fm	'G1' 'S12'	, , , , , , , , , , , , , , , , , , , ,
auxillary	'G1' 'S13'	
stimulus	'G1' 'S15'	
demographics	'G1' 'S17'	
Fs	'G1' 'S19'	
	'G1' 'S22'	

Experimental design

One condition, two different levels A and B

Two ways to add further demographic information

Hard-code it in the script:

nsubjects= numel(raw);

% Simulate a vector with age ranging from 4 to 10 years and append to

% demographics

age_min=4;

1

age_max=10;

```
age =age_min+rand(1,nsubjects)*(age_max-age_min);
```

for idx=1:nsubjects

raw(idx).demographics('age')=age(idx);

end

dx);	demographic	s =							
	68×3 <u>table</u>								
	group	subject	age						
	'G1'	'S11'	7.3416						
	'G1'	'S12'	5.6436						
	'G1'	'S13'	4.7923						
	'G1'	'S15'	8.1979						
	'G1'	'S17'	6.9154						
	'G1'	'S19'	5.0963						
	'G1'	'S22'	4.6073						

Two ways to add further demographic information

2

Use an external csv file

A	utoSave 🧿	۳ ۱	5	P	® →			de	emographics	; •			∫∕ Sear	ch							
Fi	ile Hor	ne Inse	rt Di	aw I	Page Layout	Formulas	Data	Review	View	Add-ins	He	lp Acrobat									
	Paste	X 13 ~ ~	Calibri B	Ι	- 11 <u>∪</u> - ⊞ -	- A^ - <u>⊘n</u> -	Aĭ A ∽	Ξ	= =	≫~~ <u>€</u> ≣	ŦΞ	eb Wrap Text 臣 Merge & C	Center v		General \$~	%	,	€_0 .00	.00. →0	Co For	nditional matting ~
	Clipboard	1 5			Font		G			Aligr	ment			5		Nur	nber		٦.		
î	SIGN IN T	TO OFFICE	t looks lik	e your sto	ored credentials a	ire out of dat	te. Please sig	yn in as 75***	***@ms****	**.de so we	can verif	y your subscriptio	on. <u>S</u> i	jn In							
	A	в	с	D	E	F	G	н	I	J	к	L	м	N		0	р	0		R	s
1	subject	age	_														-				
2	S11	28																			
3	S12	72																			
4	S13	99							-												
5 6	S15 S17	4																			
7	S17 S18	92								% T	o ad	ld demog	raphi	cs	info	rmat	ion	, we	use	th	ne fo
8	S2	70								CSV	File		-	re	adta	ble(f111	1 f i 1	e (da	taF	olde
9	S20	9																	- 100		bi a-
10	S22	100								Jop	=			nı	rs.m	Jaul	es.	aaaD	emog	rap	nics
1	S27	27								job	.den	oTable	=	CS	vFil	e;					
12	\$28	93								% M	atch	the fi	le to	an	exi	stin	g c	olum	n:		
14	525	04 91								iob	.var	ToMatch	=	's	ubie	ct':					
15	\$30	37								,	don	_	-		h m						
16	S31	29								raw	_den			10	b.ru	i(ra	w);				
17	S34	100								dem	ogra	phics =		ni	rs.c	reat	eDei	mogr	aphi	.csT	able

Two ways to add further demographic information

2 Use an external csv file

le <mark>Home</mark> Insert Draw Page Layout F				
Calibri ~ 11 ~	A A This me	ethod is to be	preferred:	
Clipboard SIGN IN TO OFFICE. It looks like your stored credentials are		ariates can be	e kept indepe	ndent of t
	 Addi 	itional covaria	ates can be a	dded also
A B C D E ubject age	F G H Stage	e of the analy	ysis, e.g. after	subject-le
S11 28 S12 72 S13 99	stati	stics (<i>job</i> can	be run on an	y data str
\$15 4 \$17 99 \$18 92	only	raw – so for	example, you	can run i
12 70 520 9 522 100 527 27	struc	cture contain	ing subject-le	vel statist
28 93 29 64 3 91	% Mat job.1	tch the file to an existi varToMatch = 'subject'	ing column:	
i30 37 i31 29 i34 100	raw_c	dem= job.run(1 graphics = nirs.crea	raw); ateDemographicsTable(raw_	dem)

Pre-processing and first-level stats

%% Set up basic pre-processing and first-level statistics job = nirs.modules.default modules.single_subject;

% run the analysis (Hb and SubjStats are automatically saved to the % workspace, it's defined within the pipeline) job.run(raw)

Customize your pipeline and carefully check the default options

```
function jobs = single subject
 jobs=nirs.modules.ImportData();
 jobs.Input='raw';
                                        % --> specify name of the workspace variable that undergoes this pipeline
 jobs=nirs.modules.RemoveStimless(jobs); % --> remove files without stimuli (delete this if you're doing resting state)
jobs = nirs.modules.FixNaNs(jobs);
                                       % --> Attempts to fix NaN values by interpolation.
 jobs = nirs.modules.Resample(jobs);
                                       % --> resamples to lower Fs (saves computing time)
 jobs.Fs = 5; % resample to 5 Hz
jobs = nirs.modules.OpticalDensity( jobs );
 jobs = nirs.modules.BeerLambertLaw( jobs );
 iobs.PPF= 6:
                                        % --> Default DPF is set to 5/50, change if needed
 jobs = nirs.modules.ExportData(jobs);
jobs.Output='Hb';
                                        % after Beer-Lambert, export variable and call it 'Hb'
 jobs = nirs.modules.TrimBaseline( jobs );
 jobs.preBaseline = 30;
                                        % Keep 30 seconds before start of the block and 30 seconds after the end
 jobs.postBaseline = 30;
jobs = nirs.modules.GLM(jobs);
                                         % Subject-level GLM (important: check defaults, e.g. basis function, peak time, algorithm...)
 jobs = nirs.modules.ExportData(jobs);
jobs.Output='SubjStats';
```

Pre-processing and first-level stats

>> SubjStats(1)

ans =

ChannelStats with properties:

description: 'C:\Users\Jessica\Documents\PROJECTS_NIRx\202007_StatisticsWebinar\demo_data\data\Gl\Sll\scan.nirs' variables: [140×4 table] beta: [140×1 double] covb: [140×140 double] >> SubjStats(1).variables dfe: 1.6103e+03 tail: 'two-sided' ans = probe: [1×1 nirs.core.Probe] demographics: [1×1 Dictionary] 140×4 table basis: [1×1 struct] conditions: {2×1 cell} tstat: [140×1 double] source detector type cond p: [140×1 double] q: [140×1 double] 1 1 'A' 'hbo' 1 1 'hbr' 'A' 1 'A' 2 'hbo' 1 2 'hbr' 'A' 1 6 'hbo' 'A' 1 6 'hbr' 'A' 2 1 'hbo' 'A' 2 1 'hbr' 'A' 2 2 'hbo' 'A'

GLM is *mass-univariate* analysis

one coefficient (β) for each regressor (two levels of condition), for each channel and for each component (HbO, HbR):

35 channels \rightarrow 140 coefficients

Pre-processing and first-level stats

>> SubjStats(1)

ans =

ChannelStats with properties:

description:	'C:\Users\Jessi	ca\Documents\PROJECTS_N	IIRx\202007_Statis	sticsWebinar\demo_data\data\G1\S11\sca	an.nirs'
variables:	[140×4 table]				
beta:	[140×1 double]				
covb:	[140×140 double]]	an Subjection (11 -	
dfe:	1.6103e+03		>> SubjStats(.	1).p	<pre>>> SubjStats(1).q</pre>
tail:	'two-sided'				
probe:	[1×1 nirs.core.]	Probe]	ans =		ans =
demographics:	[1×1 Dictionary]	1			
basis:	[1×1 struct]		0.0000		0.0007
conditions:	{2×1 cell}		0.0943		0.9596
tstat:	[140×1 double]		0.4037		0.9918
p:	[140×1 double]		0.2920		0.9918
d:	[140×1 double]		0.0032		0.0914
			0.4734		- 0,9918
			0.6755		1 0000
			0.2824	Deviewini Heakkers	0 9918
			0.4915	Benjamini-Hochberg	0.9910
			0.7015	(1995) procedure for	1 0000
			0.6673		1.0000
			0.3705	multiple	1.0000
			0.0317	comparisons	0.9918
			0.7988		0.5726
			0.7900	correction (FDR	1.0000
			0.0000	correction)	0.0002
			0.5150		0.9918
			0.1150		0.9767

First-level stats

SubjStats(1).draw('tstat', [-10 10], 'q < 0.05')

- t values (altern: beta)
- In the range [-10 10]
- Only for p_{FDR}<0.05

nirs.modules.MixedEffects()

- Can use any info already stored in the SubjStats variable to build the model (both categorical and continuous)
- Model must be defined in Wilkinson-Rogers notation
- Performs mixed-effects analysis (fixed + random factors), based on the matlab built-in function *fitIme*

(<u>https://www.mathworks.com/help/stats/fitlme.html</u>):

Response variable (βs from first-level)

$$\beta = L \cdot F + Z \cdot R + \epsilon$$

Model for a single channel

FIXED FACTORS RANDOM FACTORS

nirs.modules.MixedEffects()

• In the toolbox, it is implemented as to model all channels simultaneously

$$\beta = L \otimes Isr_{cdet} + Z \otimes Isr_{cdet} + \epsilon$$
Fixed factors
FOR All Channels
FOR ALL CHANNELS
FOR ALL CHANNELS

- FDR-corrected *p* values
- Has options for robust fit (to downweigh the outliers), to center the variables (especially when they have a very different scale) and to apply pre-whitening also at second-level (for formulation and details: Santosa et al 2018)

The Mixed-Effects module

E	🔤 <mark>classdef Mi</mark>	<pre>xedEffects < nirs.modules.AbstractModule</pre>
E	- %% Mixe	dEffect - Performs group level mixed effects analysis.
	8	
	% Optio	ns:
	% f	ormula - string specifiying regression formula (see Wilkinson notation)
	% d	ummyCoding - dummyCoding format for categorical variables (full, reference, effects)
	% C	enterVars - (true or false) flag for whether or not to center numerical variables
	욯	
	% Examp	le Formula:
	ક ક	this will calculate the group average for each condition
	% j	<pre>= nirs.modules.MixedEffects();</pre>
	% j	.formula = 'beta ~ -1 + group:cond + (1 subject)';
	- % j	.dummyCoding = 'full';
E	propert	ies
	for	<pre>mula = 'beta ~ -1 + group:cond + (1 subject)';</pre>
	dum	<pre>myCoding = 'full';</pre>
	cen	terVars = true;
	inc	<pre>lude_diagnostics=false;</pre>
	rob	ust=false;
	wei	ghted=true;
	ver	bose=false;
	- end	

Included in: nirs.modules.Anova() \rightarrow performs Mixed-Effects + ANOVA in the same run

%% Group-level analysis (regressors: group and condition, random intercept: subject)
% Step 1) : LMM + ANOVA to get main effects and interaction

job= nirs.modules.Anova();

job.formula= 'beta ~ group*cond + age + (l|subject)'; job.dummyCoding= 'effects';

GroupStats_ANOVA = job.run(SubjStats);

350×9 table

source	detector	type	cond	F	df1	df2	р	q	
1	1	'hbo'	'(Intercept)'	155.26	1	9170	2.3738e-35	2.4524e-33	
1	1	'hbo'	'age'	2.2655	1	9170	0.13232	0.16274	
1	1	'hbo'	'cond'	95.986	1	9170	1.4923e-22	5.1391e-21	
1	1	'hbo'	'cond:group'	1.4066	1	9170	0.23565	0.23985	
1	1	'hbo'	'group'	20.676	1	9170	5.5104e-06	2.6478e-05	
1	1	'hbr'	'(Intercept)'	22.559	1	9170	2.0686e-06	1.1873e-05	_
1	1	'hbr'	'age'	1.2737	1	9170	0.25911	0.25694	
1	1	'hbr'	'cond'	22.635	1	9170	1.989e-06	1.1873e-05	
1	1	'hbr'	'cond:group'	0.0172	1	9170	0.89566	0.55778	
1	1	'hbr'	'group'	5.4164	1	9170	0.019971	0.035572	
1	2	'hbo'	'(Intercept)'	21.754	1	9170	3.1433e-06	1.6237e-05	
1	2	'hbo'	'age'	0.1338	1	9170	0.71454	0.49213	
1	2	'hbo'	'cond'	17.549	1	9170	2.8263e-05	0.0001123	
1	2	'hho!	'cond'aroun'	0 01326	1	9170	0 90833	0 56023	

%

% see results in plots

figure;

GroupStats_ANOVA.probe.defaultdrawfcn='3D mesh (frontal)'; GroupStats_ANOVA.draw(100, 'q<0.05')</pre>

\$

% See results in table

idx= find(GroupStats_ANOVA.q < 0.05);</pre>

T= GroupStats_ANOVA.table; T= T(idx, :);

groupHbO = find(strcmpi(T.cond,'group') & strcmpi(T.type,'hbo'));

T(groupHbO, :)

source	detector	type	cond	F	df1	df2	р	q
					—			
1	1	'hbo'	'group'	20.676	1	9170	5.5104e-06	2.6478e-05
1	2	'hbo'	'group'	22.079	1	9170	2.655e-06	1.4258e-05
2	6	'hbo'	'group'	37.122	1	9170	1.1545e-09	1.2555e-08
3	1	'hbo'	'group'	25.815	1	9170	3.8323e-07	2.6395e-06
3	3	'hbo'	'group'	8.76	1	9170	0.0030869	0.0074164
4	2	'hbo'	'group'	30.431	1	9170	3.5542e-08	3.1929e-07
4	3	'hbo'	'group'	39.858	1	9170	2.8574e-10	3.69e-09
5	3	'hbo'	'group'	10.764	1	9170	0.001039	0.0029407
5	4	'hbo'	'group'	214.57	1	9170	4.8063e-48	9.9308e-46
6	3	'hbo'	'group'	14.872	1	9170	0.00011584	0.00041992
6	5	'hbo'	'group'	40.371	1	9170	2.2005e-10	3.0312e-09
7	4	'hbo'	'group'	8.3838	1	9170	0.0037947	0.0088096
9	9	'hbo'	'group'	29.582	1	9170	5.4967e-08	4.5429e-07
10	12	'hbo'	'group'	13.185	1	9170	0.00028374	0.00091603

S5-D4

F(1, 9170)= 214.57, p<0.001, pFDR <0.001

%% Follow-up

job= nirs.modules.MixedEffects();

job.formula= 'beta ~ group*cond + age + (1|subject)'; job.dummyCoding= 'effects'; job.weighted= 1; job.include_diagnostics= 1;

GroupStats ME effects= job.run(SubjStats);

>> GroupStats_ME_effects.variables(GroupStats_ME_effects.variables.source==5 & GroupStats_ME_effects.variables.detector==4, :)

ans =

10×5 <u>table</u>

source	detector	type	cond	model
5	4	'hbo'	'(Intercept)'	[l×l LinearModel]
5	4	'hbo'	'A'	[l×l LinearModel]
5	4	'hbo'	'G1'	[1×1 LinearModel]
5	4	'hbo'	'age'	[1×1 LinearModel]
5	4		alo modolo (m	oculting from fitles of
5	4 A	ccess sin	igie models (n	esulting from <i>Jiline</i>
5	4	'hbr'	'A'	[1×1 LinearModel]
5	4	'hbr'	'G1'	[1×1 LinearModel]
5	4	'hbr'	'age'	[1×1 LinearModel]
5	4	'hbr'	'A:group_G1'	[l×l LinearModel]

>> s5d4_effects.mo	del{1}			
ans =				
Linear regression beta ~ x_Inte:	model: ccept_ + A + Gl	+ age + A_grou	p_G1	
Estimated Coeffici	ients:			
Estimated Coeffici	ients: Estimate	SE	tStat	pValue
Estimated Coeffici	Lents: Estimate 	SE	tStat	pValue
Estimated Coeffic: x_Intercept_ A	Lents: Estimate 0.025452 0.0032255	SE 0.00097915 0.00072651	tStat 25.994 4.4396	pValue 5.5998e-144 9.1121e-06
Estimated Coeffici x_Intercept_ A G1	Estimate 0.025452 0.0032255 0.013197	SE 0.00097915 0.00072651 0.0010424	tStat 25.994 4.4396 12.66	pValue 5.5998e-144 9.1121e-06 1.9247e-36
Estimated Coeffici x_Intercept_ A G1 age	Estimate 0.025452 0.0032255 0.013197 -0.00012909	SE 0.00097915 0.00072651 0.0010424 3.8714e-05	tStat 25.994 4.4396 12.66 -3.3344	pValue 5.5998e-144 9.1121e-06 1.9247e-36 0.00085807

Number of observations: 9520, Error degrees of freedom: 9515 Root Mean Squared Error: 0.967

Add new demo: IQ

%% Add new demo: csvFile= readtable(fullfile(dataFolder, 'demographics_2.csv')); job = nirs.modules.AddDemographics(); job.demoTable = csvFile; % Match the file to an existing column: job.varToMatch = 'subject'; SubjStats_newDemo= job.run(SubjStats); newDemo = nirs.createDemographicsTable(SubjStats_newDemo);

No need to start over, you can append new info to the subject-level statistical results

A	utoSave (5	C B	~	demogi	aphics_2	- Saved -	· .	O Searc	1					
F	ile H	ome Inse	ert Drav	v Page L	ayout	Formulas	Data	Revie	w Vie	w Ad	d-ins	Help	Acrobat			
	ĥ	X	Calibri			~ 11 ~	Ξ	Ξ	Ξ	ib e	Gener	al	~		Conditional	Formatting ~
	Paste	[<u></u> ~	В	<i>Ι</i> <u>U</u>	~ A^	A	≡	Ξ		, ,	\$	~ %	9	10 F	ormat as Ta	ble ~
	~	4	×	🕭 ~ A	~		÷Ξ	→ Ξ	* ~		←.0 .00	.00		1	Cell Styles ~	
	Clipbo	ard 🗔		Font		Гы		Alignm	ent	L ²		Number	- F3		Styles	
G	SIGN I	N TO OFFICE	lt looks like y	our stored cre	dentials a	are out of date.	Please sig	n in as 75'	*****@ms	******.de s	o we can	verify you	ır subscriptio	on. <u>S</u> i	gn In	
Q	18	· · · · · · · ·	×	f _{sc}												
	Α	В	С	D	E	F	G	н	1			K	L	М	N	0
1	subject	age	IQ													
2	S11	28	140													
3	S12	72	135													
4	S13	99	150													
5	S15	4	138													
6	S17	99	126													
7	S18	92	93													
8	S2	70	91													

Add new demo: IQ

IQ very different between the two groups

% Redo exactly same as	nalysis	
%% Group-level analys	is (regressors: group and condition, random intercept:	subject)
% Step 1) : LMM + ANO	VA to get main effects and interaction	
job= nirs.modules.Ano	va();	
job.formula=	<pre>'beta ~ group*cond + age + IQ + (1 subject)';</pre>	
job.dummyCoding=	'effects';	
job.weighted=	1;	
GroupStats_ANOVA_IQ =	job.run(SubjStats_newDemo);	

8

% See results in table

idx= find(GroupStats_ANOVA_IQ.q < 0.05); T= GroupStats_ANOVA_IQ.table; T= T(idx, :); groupIQHbO = find(strcmpi(T.cond,'group') | strcmpi(T.cond,'IQ') & strcmpi(T.type,'hbo')); T(groupIQHbO, :)

31×9 table

source	detector	type	cond	F	df1	df2	р	đ
1	1	'hbo'	'IQ'	9.7669	1	9100	0.0017824	0.0062961
1	1	'hbo'	'group'	17.95	1	9100	2.2903e-05	0.00014935
1	2	'hbo'	'group'	5.5715	1	9100	0.018276	0.041874
1	6	'hbo'	'group'	7.5703	1	9100	0.0059454	0.016732
3	1	'hbo'	'IQ'	19.292	1	9100	1.1343e-05	8.1194e-05
3	1	'hbo'	'group'	29.481	1	9100	5.7931e-08	9.8222e-07
3	1	'hbr'	'group'	5.5135	1	9100	0.018891	0.042898
4	2	'hbr'	'group'	8.5293	1	9100	0.0035032	0.010735
4	3	'hbo'	'group'	10.209	1	9100	0.0014026	0.0051697
5	3	'hbo'	'IQ'	15.584	1	9100	7.9514e-05	0.00044939
5	3	'hbo'	'group'	20.721	1	9100	5.3816e-06	4.2771e-05
5	3	'hbr'	'group'	15.651	1	9100	7.6757e-05	0.00044367
5	4	'hbo'	'IQ'	97.956	1	9100	5.5886e-23	2.8427e-21
5	4	'hbo'	'group'	144.08	1	9100	6.0593e-33	1.541e-30
5	4	'hbr'	'group'	8.5494	1	9100	0.0034648	0.010735
7	7	'hbo'	'IQ'	27.563	1	9100	1.5548e-07	2.326e-06
7	7	'hbo'	'group'	27.337	1	9100	1.747e-07	2.4684e-06
8	4	'hbo'	'IQ'	110.07	1	9100	1.3213e-25	1.1201e-23

Before including IQ, effect of group for channel S5-D4 was:

F(1, 9170)= 214.57, *p*<0.001, *p*_{FDR} <0.001

%% Follow-up									
job= nirs.mo	dules.MixedE	ffects();							
job.formula=		'beta	a ~ group*cond + a	ge + IQ + (l subject)';					
job.dummyCod	ing=	'effe	cts';						
job.weighted	=	1;							
job.include_	diagnostics=	: 1;							
GroupStats_M	E_IQ_effects	= job.run	(SubjStats_newDem	10);	>> s5d4_effects_IQ	2.model{1}			
s5d4_effects	_IQ =				ans =				
12×5 <u>table</u>	1				Linear regression	model:	+ 202 + 10 + 1	group Gl	
source	detector	type	cond	model	beta a <u>x</u> _inter	tept_+A+01	T age T IV TA	_group_or	
					Estimated Coeffici	ients:			
						Estimate	SE	tStat	pValue
5	4	'hbo'	'(Intercept)'	[l×l LinearModel]					
5	4	'hbo'	'A'	[l×l LinearModel]					
5	4	'hbo'	'G1'	[l×l LinearModel]	x_Intercept_	0.023509	0.0010531	22.324	1.2197e-107
5	4	'hbo'	'age'	[l×l LinearModel]	Α	0.0032674	0.00072932	4.4801	7.5474e-06
5	4	'hbo'	'IQ'	[l×l LinearModel]	G1	0.037899	0.0042713	8.8729	8.4122e-19
5	4	'hbo'	'A:group_G1'	[l×l LinearModel]	age	-0.00019766	3.9731e-05	-4.9749	6.6408e-07
5	4	'hbr'	'(Intercept)'	[1×1 LinearModel]	IQ	-0.001159	0.00020713	-5.5954	2.2619e-08
5	4	'hbr'	'A'	[1×1 LinearModel]	A group G1	-0.0013639	0.00072915	-1.8705	0.061448
5	4	'hbr'	'G1'	[l×l LinearModel]					
5	4	'hbr'	'age'	[l×l LinearModel]					
5	4	'hbr'	'IQ'	[l×l LinearModel]	Number of observat	tions: 9520, Erm	or degrees of	freedom: 95	514
5	4	'hbr'	'A:group_G1'	[l×l LinearModel]	Root Mean Squared	Error: 0.97	-		

 Access to single models is very useful to look up any other info about the fit (goodness of fit measures, model criteria, ..)
 → model selection

s5d4_effects_IQ =

12×5 <u>table</u>

source	detector	type	cond	model
5	4	'hbo'	'(Intercept)'	<pre>[l*l LinearModel]</pre>
5	4	'hbo'	'A'	[1×1 LinearModel]
5	4	'hbo'	'G1'	[1×1 LinearModel]
5	4	'hbo'	'age'	[1×1 LinearModel]
5	4	'hbo'	'IQ'	[1×1 LinearModel]
5	4	'hbo'	'A:group G1'	[1×1 LinearModel]
5	4	'hbr'	'(Intercept)'	[1×1 LinearModel]
5	4	'hbr'	'A'	[1×1 LinearModel]
5	4	'hbr'	'G1'	[1×1 LinearModel]
5	4	'hbr'	'age'	[1×1 LinearModel]
5	4	'hbr'	'IQ'	[1×1 LinearModel]
5	4	'hbr'	'A:group_G1'	[1×1 LinearModel]

Property 🔺	Value	
🔜 Residuals	9520x4 table	
🕂 Fitted	9520x1 double	
Diagnostics	9520x7 table	
H MSE	0.9401	
🕂 Robust	[]	
H RMSE	0.9696	
😰 Formula	1x1 LinearFormula	
🕂 LogLikelihood	-1.3211e+04	
H DFE	9514	
E SSE	8.9440e+03	
🕂 SST	1.0319e+04	
🛨 SSR	1.3749e+03	
CoefficientCovariance	бхб double	
O CoefficientNames	1xб cell	
H NumCoefficients	6	
H NumEstimatedCoefficients	6	
Coefficients	6x4 table	
E Rsquared	1x1 struct	
ModelCriterion	1x1 struct	
🛄 VariableInfo	7x4 table	
Η NumVariables	7	
VariableNames	7x1 cell	
H NumPredictors	6	
PredictorNames	6x1 cell	
ResponseName	'beta'	
H NumObservations	9520	
🛨 Steps	[]	
🔛 ObservationInfo	9520x4 table	
🔛 Variables	9520x7 table	
ObservationNames	0x0 cell	

 Access to single models is very useful to look up any other info about the fit (goodness of fit measures, model criteria, ..)
 → model selection Akaike information criterion (AIC): without IQ : 26376 with IQ: 26434

Bayesian information criterion (BIC) : without IQ:26412 with IQ : 26477

• Including the IQ did not improve the model under neither of the criteria

- Always enter covariates that are known to have correlatation to the outcome variable
- Enter covariates if they are not homogeneously distributed across groups of interest
- Brain AnalyZIR toolbox has methods for Mixed Effects + ANOVA at group level
- Model selection: check the model fit and the model criteria to see if it improves the fit
 (→ then, it is explanatory of the data)

- Statistics without math for psychology, by Dancey and Reidy
- Discovering statistics using SPSS/R, by Andy Field
- Multilevel modelling free online course offered by University of Bristol (<u>http://www.bristol.ac.uk/cmm/learning/online-course/</u>)
- Howard J. Seltman's book "Experimental design and analysis" (freely available at http://www.stat.cmu.edu/~hseltman/309/Book/Book/Book.pdf), and in general his whole website it has tons of resources